Выбор диодов для схемы выпрямления

Выпрямитель электрического тока это устройство, преобразующее переменный ток в постоянный. Он обычно реализуется на полупроводниковых диодах. Простейший выпрямитель тока содержит трансформатор, выпрямительный диод и нагрузку.

Его принципиальная схема приведена на рисунке 1.


Рисунок 1. Схема простейшего выпрямителя переменного тока

Приведенная на рисунке 1 схема построена по однотактной схеме выпрямления однофазного источника переменного напряжения. В этой схеме трансформатор позволяет преобразовать переменное напряжение до необходимого на выходе значения.

Полупроводниковый диод пропускает ток только в одном направлении, именно этот ток подается в нагрузку.

Выпрямленное напряжение Ud содержит полезную составляющую (постоянное напряжение U0) и ряд гармоник частоты входного тока fсети, в том числе и основную гармонику с частотой входного напряжения. Амплитуды гармоник тока на выходе однотактного выпрямителя напряжения можно определить по коэффициентам Берга для угла отсечки, равного 90°.

В идеальном случае гармонический спектр продолжается до бесконечности. В реальных устройствах он ограничивается фильтрующим действием паразитных элементов схемы.

Как уже обсуждалось в статье "Преобразование выбор диодов для схемы выпрямления тока в постоянный", в однотактных схемах постоянный ток нагрузки протекает через трансформатор, поэтому его сердечник подмагничивается. Понять процессы, происходящие в однотактном выпрямителе, помогут временные диаграммы, приведенные на рисунке 2.


Рисунок 2. Временные диаграммы токов и напряжений однополупериодного выпрямителя тока

Как уже определялось при обсуждении схемы замещения трансформатора, ток в первичной обмотке трансформатора равен выбор диодов для схемы выпрямления тока его холостого хода (ixx) и переменной составляющей тока нагрузки, пересчитанной в первичную цепь (i2’).

Форма тока в первичной обмотке (i1) трансформатора, входящего в состав однополупериодного выпрямителя, сильно отличается от синусоидальной. По этой причине подобная схема применяется достаточно редко.

В общем случае, при работе от многофазной сети переменного тока, у трансформатора есть m1 первичных обмоток, подключенных к различным фазам сети, и р фаз во вторичной цепи, которое называют пульсностью. Обычно m1p.

Пульсность схемы определяется произведением

p = k · q            (1) где k – число вторичных обмоток трансформатора q – число импульсов тока за период в одной обмотке.

С точки зрения выражения (1) однопериодный выпрямитель тока, принципиальная схема которого приведена на рисунке 1, обладает пульсностью p = 1 · 1 = 1

В качестве примера выпрямителя тока с количеством фаз напряжения на выходе больше, чем на входе, можно привести двухфазный однотактный выпрямитель тока.

Его принципиальная схема приведена на рисунке 3.


Рисунок 3. Принципиальная схема двухфазного однотактного выпрямителя тока

В данном случае используются две вторичных обмотки, включенных противофазно (обмотка с отводом посередине).

В течение одного периода сети через каждую из них протекает один импульс тока i2’ и i2". Благодаря диодам эти токи протекают через нагрузку в одном направлении, а через вторичные обмотки из-за противофазного включения — в разных направлениях. В результате форма тока в первичной обмотке не искажается и в сердечнике трансформатора не происходит подмагничивание постоянным током.

При этом с точки зрения выражения (1) в данной схеме пульсность p= k · q =2 · 1 = 2. Уменьшение времени, когда на нагрузке отсутствует входное напряжение, позволяет значительно уменьшить габариты сглаживающего фильтра. Временные диаграммы токов и напряжений двухфазного однотактного выпрямителя тока приведены на рисунке 4.


Рисунок 4.

Временные диаграммы токов и напряжений двухфазного однотактного выпрямителя тока

При расчете сглаживающего фильтра очень важно знать частоту первой гармоники пульсаций. В схеме двухфазного однотактного выпрямителя она вдвое выше частоты сети (ТП = Т/2) и может быть определена через пульсность

fП = p · fс            (2)

В качестве еще одного примера схемы выпрямления переменного тока рассмотрим двухтактный выпрямитель.

Его еще называют однофазным диодным мостом. Принципиальная схема двухтактного выпрямителя переменного напряжения приведена на рисунке 5.


Рисунок 5.

Принципиальная схема двухтактного выпрямителя переменного тока выбор диодов для схемы выпрямления диаграммы токов и напряжений этого устройства совпадают с временными диаграммами двухфазного однотактного выпрямителя тока, приведенными на рисунке 4. В выпрямителе переменного тока на диодном мосте присутствует только одна вторичная обмотка, поэтому k = 1.

В то же самое время количество импульсов тока за период равно 2, поэтому пульсность в данной схеме выбор диодов для схемы выпрямления p= выбор диодов для схемы выпрямления · q = 1 · 2 = 2. По этой формуле полное название устройства, приведенного на рисунке 5, это двухтактный однофазный выпрямитель тока.

Частота первой гармоники пульсаций в данном случае, как и для двухфазного однотактного выпрямителя вдвое выше частоты сети. Тем не менее, выбор диодов для схемы выпрямления применения этих типов выпрямителей тока несколько отличаются. Для низковольтных устройств лучше подходит схема, показанная на рисунке 3, так как в ней падение напряжения происходит только на одном диоде.

В ряде случаев это настолько важно, что можно пренебречь возрастанием стоимости трансформатора. В преобразователях AC/DC с относительно высоким выходным напряжением лучше применять схему, приведенную выбор диодов для схемы выпрямления рисунке 5, так как на выбор диодов для схемы выпрямления диодах действует одинарное обратное напряжение (в схеме двухфазного однотактного выпрямителя — удвоенное, так как напряжение на нагрузке и напряжение обмотки трансформатора складываются).

Однофазный выпрямитель напряжения подходит только для схем с относительно небольшим потребляемым током. При необходимости получить значительные величины постоянного тока лучше использовать выбор диодов для схемы выпрямления выпрямитель тока. Его основным преимуществом является меньший уровень пульсаций выходного напряжения, что значительно снижает требования к сглаживающему фильтру.

В качестве примера приведем схему трехфазного однотактного выпрямителя тока. Она показана на рисунке 6.


Рисунок 6. Принципиальная схема трехфазного однотактного выпрямителя переменного тока

Трехфазный однотактный выпрямитель напряжения состоит из трёхфазного трансформатора и трёх выпрямительных диодов VD1, VD2 и VD3. Нагрузка выбор диодов для схемы выпрямления между точкой соединения катодов диодов и общей точкой вторичных обмоток трансформатора.

Для пояснения принципов работы данного устройства на рисунке 7 приведены временные диаграммы токов и напряжений на вторичных обмотках трансформатора, на выходе схемы и на одном из выпрямительных диодов.


Рисунок 7. Временные диаграммы токов и напряжений трехфазного однотактного выпрямителя тока

Трехфазный однотактный выпрямитель переменного тока применяется в относительно низковольтных устройствах.

На его выходе удается получить пульсацию напряжения около 13%. Это соответствует требованиям к качеству питания большинства устройств. по крайней мере при сварке постоянным током электрическая дуга не будет гаснуть, что позволит получить качественный шов сварки выбор диодов для схемы выпрямления.

Если для питания устройства требуется большее напряжение по сравнению с предыдущим случаем, то можно применить трехфазную двухтактную схему выпрямления тока. Она позволяет снизить требования к сглаживающему фильтру. Принципиальная схема трехфазного двухтактного выпрямителя тока приведена на рисунке 8.

Это устройство известно также под названием трехфазного выпрямительного моста или схемы Ларионова.


Рисунок 8. Принципиальная схема трехфазного выпрямительного моста

Напряжение на выходе схемы, приведенной на рисунке 8, можно представить как сумму двух трехфазных однотактных выпрямителей тока, работающих в противофазе.

Его можно записать как Ud выбор диодов для схемы выпрямления Ud1 + Ud2. Это позволяет увеличить количество фаз на выходе схемы и тем самым увеличить основную частоту пульсаций выходного напряжения. Это позволяет уменьшить требования к сглаживающему фильтру, а в ряде случаев вообще отказаться от.

В схеме Ларионова на входе выпрямителя присутствуют выбор диодов для схемы выпрямления фазы обмотки, поэтому k = 3 и ее пульсность p= k · q = 3 · выбор диодов для схемы выпрямления = 6.

Отсюда можно определить основную частоту спектра пульсаций fП = 6 · fс. Временные диаграммы токов и напряжений в различных точках схемы трехфазного выпрямительного моста приведены на рисунке 9.


Рисунок 9.

Временные диаграммы токов и напряжений трехфазного выпрямительного моста

Как видно из приведенных временных диаграмм уровень пульсаций на выходе рассмотренного трехфазного выпрямителя тока значительно меньше предыдущих вариантов выпрямителей и составляет 3,5%. Однако с помощью трехфазного трансформатора можно получить на выходе количество фаз больше шести.

Это позволяет дополнительно уменьшить уровень пульсаций напряжения на выходе трёхфазного выпрямителя тока. Возможна реализация девяти, двенадцати, восемнадцати и более фазных выпрямителей. Повышение количества фаз позволяет уменьшить уровень пульсаций напряжения на выходе выпрямителя.

В качестве примера рассмотрим схему двенадцатипульсного выпрямителя тока. Его схема приведена на рисунке 10.


Рисунок 10. Схема двенадцатифазного выпрямителя тока

В данной схеме применяется трехфазный трансформатор с двумя вторичными обмотками для каждой фазы.

выбор диодов для схемы выпрямления

При этом одна группа вторичных обмоток включается по схеме "звезда", а другая — "треугольник". В результате напряжения на выходе каждой из групп вторичных обмоток оказывается сдвинутыми на 30° Для того, чтобы напряжения были равны, количество витков в каждой из групп вторичных обмоток отличаются в 1.73 раза. Благодаря последовательному включению постоянные напряжения на выходе диодных мостов суммируются Ud = Ud1 + Ud2 и на нагрузке действует напряжение с частотой пульсаций в 12 раз выше частоты сети и значительно меньшим по сравнению с предыдущими схемами уровнем пульсаций, равным 0.9%.


Дата последнего обновления файла 16.02.2018

Литература:

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт.

    Учебное пособие. – Выбор диодов для схемы выпрямления, 2008. – 448 с.

  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Денисов А.И., Зволинский В.М., Руденко Ю.В. Вентильные преобразователи в системах точной стабилизации. – К.: Наукова думка, 1997. – 250 с.

Вместе со статьей "Схемы выбор диодов для схемы выпрямления читают:

Преобразование переменного тока в постоянный
http://digteh.ru/BP/Preobraz/

Неуправляемый вентиль и его характеристики
http://digteh.ru/BP/Ventil/

Выпрямитель с индуктивной нагрузкой
http://digteh.ru/BP/IndHarNagr/

Выпрямитель с емкостной нагрузкой
http://digteh.ru/BP/EmkostHarNagr/

Источник: http://digteh.ru/BP/Vyprjam/

Полезные статьи

Copyright © 2018